
      

     

  
  

  
   

  
  

  
   

  

  

  

     
  

   
       

     
       

       
     

       
    

   
  

    
     

      

  

  

  

  

 
    

1

2

3
4
5
6

7
8
9

10

11

12

13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29

30

31

32

33
34

Some Methods for Addressing Errors in Static AIS Data Records 

Steven D. Meyers*a, Yasin Yilmazb and Mark E. Luther a 

aCenter for Maritime and Port Studies 
University of South Florida, 

St. Petersburg, FL, USA 
smeyers@usf.edu, mluther@usf.edu 

bCollege of Engineering 
University of South Florida, 

Tampa, FL, USA 
yasiny@usf.edu 

*corresponding author 

Abstract 

The Automatic Identification System (AIS) provides essential services in support of maritime 
domain awareness. Accurate AIS values for hull dimension and type are often critical for safe 
and efficient management of ship traffic, and for development of new artificial intelligence 
maritime algorithms. AIS variables are subject to fault from multiple sources, ranging from bad 
weather to human error. New heuristic methods for correcting ship draft, beam, and class were 
developed and evaluated, using AIS data in the vicinity of large Florida ports as a test bed. Novel 
low order polynomials for 9 broad functional vessel classes yielded predicted values for draft and 
beam as functions of vessel length. The majority of relative differences between predicted and 
reported values were <0.1. A logistic regression (LR) multiclass classification scheme using the 
residuals from these polynomial predictions generally showed good agreement between 
estimated and reported vessel class. The LR scheme demonstrated skill in verifying AIS-
transmitted classification, detecting incorrectly classified vessels, and flagging those with 
incorrect draft or operating near an extreme draft. A diagnostic of reports whose classification 
had very low and very high confidence suggested directions for further improvement of the 
algorithm. A new hierarchy for processed AIS data is proposed. 

Keywords: automatic identification system; multiclass classification; vessel identification; 
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Introduction 

The Automatic Identification System (AIS) is a maritime vessel recognition scheme originally 
designed to increase situational awareness between vessels, and between vessels and ports 
(Harre, 2000; Murk, 1999). Through the AIS, vessels transmit their identifying information every 
few minutes using automated radio signals. Two general categories of data are provided by the 
AIS: static and dynamic. Static variables are typically fixed quantities, including the Maritime 
Mobile Service Identity (MMSI) number, length (𝐿𝐿), beam (𝐵𝐵), draft (𝐷𝐷), and type (𝑌𝑌), though 
the draft of cargo and tanker ships can change when material is offloaded or onloaded. Crew 
members are responsible for entering the static values into the AIS transmitter. Dynamic 
variables include time of transmission, vessel position, speed over ground, and heading. These 
are typically entered into the report automatically by instrumentation. 

AIS data can be accessed in real-time using specialized receivers that pickup broadcasts within a 
~50 km radius, or with a slight delay through data service companies such as Pole Star USA, 
Marine Traffic, GateHouse Maritime, and others that access the ground-based as well as satellite 
AIS receivers. These companies often provide small amount of AIS data to researchers without 
charge. Processed AIS data in US coastal waters is also available, sometimes with a significant 
delay but without cost, from Marine Cadastre (marinecadastre.gov/ais), a combined service of 
the U.S. Department of Commerce’s National Oceanic and Atmospheric Administration 
(NOAA) Office for Coastal Management and the U.S. Department of the Interior’s Bureau of 
Ocean Energy Management (BOEM). Regardless of the provider, most of these data are offered 
with little to no error flagging or correction. This may be because objective error handling 
routines for AIS data are still under development, most of which have focused on the dynamic 
variables. There have been few publications regarding the static AIS variables in this context. 
Adoption of a standard set of handling routines would facilitate AIS usage in a range of 
applications. The outline for such a system is proposed at the end of this article. 

AIS data have become essential to the monitoring and management of global vessel traffic, as 
well as in academic and private sector maritime research programs (Tu et al., 2017; Yang et al., 
2019). The latter encompasses many areas of maritime operations, including relatively simple 
maps of vessel traffic density (Demšar and Virrantaus, 2010; Shelmerdine, 2015), predicting 
future routes and collision avoidance (Chen et al., 2018; Rong et al., 2019; Silveira et al., 2013; 
Wang et al., 2013), predicting arrival times (Dobrkovic et al., 2016; Jahn and Scheidweiler, 
2018; Xin et al., 2019), and detecting anomalous vessel movement (Liu, 2015; Oh et al., 2018; 
Sidibé and Shu, 2017). Lim et al. (2018), Robards et al. (2016), and Zhou et al. (2019) provide 
reviews of AIS applications, many of which utilize artificial intelligence / machine learning 
where AIS records are used as a source of training data. 

Incomplete or inaccurate AIS reports can confound studies of maritime operation. Such faulty 
data arise from multiple causes, such as human error, instrument failure, an overwhelmed 
transmission spectrum, and atmospheric interference (Emmens et al., 2021; Harati-Mokhtari et 

https://marinecadastre.gov/ais
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al., 2007). Processed AIS data may also be subject to 
errors or inconsistencies in sorting, filtering, or 
transcription. Most previous studies have focused on 
detection of dynamic AIS errors (Bošnjak et al., 2012; 
Sun et al., 2021; Zhao et al., 2018). Of relevance to 
this study, Guo et al. (2021) used kinematically-based 
cubic polynomials to model trajectories and determine 
errors in vessel position and speed by their generic 
“distance” from the model. There have been few 
publications that focused on correcting static AIS 
errors. Wang et al. (2021) applied the Random Forest 
algorithm to AIS static values to identify five vessel 
classes. Sheng et al. (2018) developed a logistic 
regression binary classifier that discriminated between 
Cargo and Fishing class vessels based on their 
position, course, and speed near Shantou, China. 
Steidel et al. (2019) suggested correcting AIS 
Destination data using a combination of automated and 
direct communication with each vessel. Atypical B vs. 
L values were used to manually identify 3 
misclassified, misreported, or unusually large vessels 
in a narrowly defined group of bulk carriers (Smestad 
et al., 2017). 

This study examines some novel methods for correcting errors in static variables associated with 
hull dimension and type for many vessel classes. As demonstrated below, these variables were 
found to be interrelated and could be used to help determine missing values or detect 
inconsistencies in the group of values for many vessels. The methods examined start with simple 
heuristic drop-out replacement, but also include a new algebraic representation that takes 
advantage of the dependence between the static variables related to hull geometry, and a 
multiclass classification (MCC) scheme for confirming functional vessel class. The methods 
developed here can be used to flag or correct some missing or unusual static AIS variables. 

Section 2 describes the AIS data used in this study. Restricting the analysis to underway vessels 
in the vicinity of large Florida ports (Figure 1) reduced computational cost for this initial analysis 
while retaining diversity of vessel types. Polynomial models and logistic regression are described 
as they relate to this study. Section 3 presents the geometric relations of hull dimensions found 
when partitioning by vessel functional class. The number of missing or inconsistent static values 
is then examined, and the potential use of polynomials to represent geometric hull relations and 
correct these errors is tested. This is followed by the development and testing of the new vessel 

Figure  1. Map of peninsular Florida. The  
5 largest ports are indicated.  
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classification system. Section 4 is a Discussion of the findings and how the methods employed 
might be adapted or improved. A new system of organizing processed AIS data is proposed. 

2. Data and Methods 

2.1 AIS Data 

The AIS is divided into Class A and Class B. Class A transmissions have a range around 30-50 
km, are prioritized by the system, and are mandatory for large and passenger vessels subject to 
the International Convention for the Safety of Life at Sea (SOLAS). Class B transmissions have 
a range ~16 km, are not prioritized, and are used by non-SOLAS craft, typically personal 
watercraft and some smaller, domestic commercial vessels. 

AIS reports for the years 2015-2019 were obtain from Marine Cadastre who added Class B to 
their AIS records starting in 2018. Years prior only contained Class A reports. Also prior to 
2018, 𝐿𝐿 and 𝐵𝐵 were provided to a precision of 0.01 m, but afterwards were provided as integer 
values. A relatively small subset of these reports was utilized in this analysis to facilitate 
development of the algorithms presented in this study. 

Following Mitchell and Scully (2014), irregular polygonal Areas of Interest (AOI) around the 
five largest commercial ports in the state of Florida, Miami, Everglades, Jacksonville, Tampa, 
and Palm Beach, (Figure 1), were used to delimit a subset of AIS records. Vessel traffic is 
concentrated around ports. Extracting AIS records near them reduces the volume of records to be 
examined while retaining a breadth of sample comparable to that obtained from larger areas 
(e.g., the entire coast of Florida) that would include many of the same vessels as they traveled 
between ports. Each AOI included the port and its access waters and channels. AIS reports from 
all the ports were binned and analyzed collectively. Vessels that were slow or not moving (speed 
< 0.5 kn) for an entire year were not considered. This yielded a nominal 107 AIS reports per year 
of which <~0.01% lacked an MMSI, and were removed from the analysis. Some of the reports 
with missing MMSI provided an IMO number which could have been be used to check the 
vessel identification using an external database (Winkler, 2012), but the focus here was on 
exploiting relations between the geometric static values. 

The unique MMSI and associated values of 𝐿𝐿, 𝐷𝐷, 𝐵𝐵, and 𝑌𝑌 reported in the AIS were determined. 
The number of vessels by class, and the number of vessels in each class with problems in their 
statics were found. For example, the number of vessels reporting both 𝐷𝐷 = 0 and 𝐷𝐷 > 0 (at 
different times) provided a measure of the utility for a direct replacement method. Calculating 
this same number but restricted to 𝐿𝐿 > 30 m, eliminated many personal craft that have a higher 
rate of static AIS errors (Meyers et al., 2020), and helped focus the analysis on commercial and 
other ships more likely to be professionally maintained.  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

  

 
 
 
 

  

   

147 2.2 Functional  Vessel  Classes   

Vessel  identification in the AIS includes a  choice  from about  100 unique  numbers  that indicate  
vessel type s uch as search and rescue, recreational, cargo, and tanker,  with the latter two further  
divided into a general  type  or one  of several hazard classifications.  Marine Cadastre organizes  
many of  these AIS  types  into functional classes. A similar prescription was  followed here, with 
each AIS  report being labeled according to the class for the reported type (Table 1). About 10-
15%  of the vessels  were  not  readily  incorporated  into a functional class  (e.g., types 1005, 1007, 
1018), so were not part of the class-based analysis. T he number of unique vessels within each 
class was determined for  each  year  2015-2019  (Tables  2, 3).  Large year over year changes in the  
relative number of vessels  for some classes  appear to have been associated  with changes in the 
processing of the  AIS data  provided by Marine Cadastre.  For example, in 2018 several Supply  
class  vessels started  reporting as type  90, which is ‘unspecified’, decreasing the number in the  
class. Similarly, many pilot and tender vessels made the opposite switch in 2018, changing from  
an unspecified type to one that fit within the  Enforcement  class  as defined here, though most of  
these w ere smaller vessels (L<30 m)  so did not impact the bulk of the analysis.  Additionally, a  
small number of military  vessels became identifiable as such in 2018  before which they were 
typically listed as ‘public’ or ‘other’ AIS types.  
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164 Table 1. AIS types in defined functional vessel classes, and the number of unique vessels in each  class by  
year.  165 

166 

167 
168 
169 
170 

 Class  AIS Vessel Type  2015  2016  2017  2018  2019 
Recreational   36,37,1019  3011  3595  3858  5953  6596 

Cargo   70-79,1003,1004,1016  1263  1306  1266  1189  1129 
 Tug  21,22,31,32,52,1023,1025  342  373  395  404  373 

 Tanker  80-89, 1017, 1024  303  262  244  218  212 
Passenger  60-69, 1012-1015   171  212  245  260  263 

 Fishing  30,1001,1002  51  1025  158  211  224 
 Supply  1010  28  34  42  0  0 

Research   1020  24  22  24  0  0 
Enforcement   35,50,53,55  0  2  3  39  55 

It was useful to define the set of all AIS reports (𝐴𝐴) such that  𝐿𝐿, 𝐵𝐵, 𝐷𝐷, and 𝑌𝑌  are positive, real-
valued numbers. That is, the set  𝐴𝐴 = {𝑘𝑘: 𝐿𝐿𝑘𝑘 , 𝐵𝐵𝑘𝑘 , 𝐷𝐷𝑘𝑘 , 𝑌𝑌𝑘𝑘 > 0}, where 𝑘𝑘  indexes the reports. 
Further, subsets of  𝐴𝐴  for  a particular class  𝑐𝑐, 𝑆𝑆𝑐𝑐 = {𝐴𝐴: 𝑌𝑌 ∈ 𝑐𝑐}  and  its complement 𝑆𝑆′𝑐𝑐 = {𝐴𝐴: 𝑌𝑌 ∉ 𝑐𝑐}  
were defined.  
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Table 2. Total  numbers by year: Number of unique MMSI, number with only zero or missing values for  
the  indicated static variable, number with multiple  𝐷𝐷, number with multiple  𝐷𝐷  including at least  one zero 
value, number with all hull  dimensions  but  undefined type.  

  2015  2016  2017  2018  2019 
 # Unique Vessels   6728  7561  8428  9052  9838 

 # all 𝐿𝐿=0  1449  1928  2843  2220  2263 
 # all 𝐷𝐷=0  4310  5327  6401  6924  7827 
 # all 𝐵𝐵=0  3178  3931  4808  4017  3899 
 # all 𝑌𝑌=0  1378  581  1994  487  683 

 # Multiple 𝐷𝐷   147  883  523  118  99 
# Multiple w/𝐷𝐷=0   9  846  491  25  10 
# 𝐿𝐿𝐵𝐵𝐷𝐷>0 & 𝑌𝑌=0   42  6  28  10  11 

181 
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186 

Table 3. Same as Table 2  but restricted to  𝐿𝐿>30 m.  

  2015  2016  2017  2018  2019 
# Unique Vessels   2472  2520  2468  2422  2371 

 # all 𝐷𝐷=0  244  451  562  464  508 
 # all 𝐵𝐵=0  80  181  185  177  180 
 # all 𝑌𝑌=0  51  3  24  16  17 

 # Multiple 𝐷𝐷   136  804  474  93  91 
# Multiple w/𝐷𝐷=0   4  768  443  5  3 
# 𝐿𝐿𝐵𝐵𝐷𝐷>0 & 𝑌𝑌=0   5  1  4  4  6 

2.3 Replacement  Methods  for Static AIS  

The 2018 change  in some AIS types  suggested  a simple method for improving the  accuracy of  
static descriptors  for  a vessel.  If a static AIS variable is accepted as valid during one time period,  
but  provides a different, invalid or missing  value  during another  time, then the valid value can be  
used to replace the values  in question. This was the first method  assessed  in this study.   

 



 
 
 
 
 

  

 
 
 
 
 
 
 

 
 
 

187 Table 4. Quadratic  fitting for each class (Table 1)  beam and draft, based on 2015-2019 AIS records. 
Shown are the class name, maximum AIS  vessel l ength value in class (𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚), the extrema vessel  length  
(𝐿𝐿𝑒𝑒𝑚𝑚 ),  fitting coefficients (1), number of unique vessels used in the  fit  (𝑁𝑁), the root-mean-square 
difference between estimated  and actual  values in the fit (RMSD), and the mean  relative absolute  
difference  (MRAD)  of the fit.  

188 
189 
190 
191 

192 

193 

 Class 
  𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 

 (m) 
  𝐿𝐿𝑒𝑒𝑚𝑚 

 (m) 
c2   
  (10-4 m-1) 

c1  

 
c0   

 (m) 
 N 

 
 RMSD 

 (m) 
MRAD  

 
 Beam 

Cargo   200  -46.9  4.15  0.0389  8.16  2198  1.906  0.058 
Tanker   200  -159.3  3.03  0.0965  3.35  576  1.697  0.047 
Passenger   199  188.1  -6.80  0.2570  0.75  67  3.052  0.141 

 Tug  180  197.9  -4.60  0.1808  5.03  379  2.783  0.101 
 Fishing  40  58.3  -20.5  0.2386  1.90  36  1.059  0.136 

Recreational   163  -707.7  0.84  0.1187  3.33  667  1.335  0.089 
Research   126  18.1  21.4  -0.0775  9.64  35  4.012  0.142 

 Supply  130  30.2  12.4  -0.0746  15.48  46  4.608  0.153 
 Draft 

Cargo   367  366.4  -1.10  0.0812  -1.21  3048  1.408  0.125 
Tanker   337  390.2  -1.40  0.1069  -3.27  718  1.405  0.101 
Passenger   362  498.4  -0.35  0.0353  0.94  182  0.593  0.094 

 Tug  180  118.0  7.00  0.1651  -0.29  379  0.996  0.148 
 Fishing  40  14.4  -2.70  0.0079  2.60  36  0.616  0.191 

Recreational   163  -6.1  2.31  0.0028  2.13  667  0.870  0.201 
Research   126  145.9  -4.20  0.1225  -1.36  35  0.706  0.164 

 Supply  130  145.4  -5.20  0.1519  -2.97  46  0.633  0.110 

The second method was  developed to fill missing  𝐵𝐵  and  𝐷𝐷  values  when no such replacement  
value is available, and to potentially detect faulty  values  of these variables. Hull aspect ratios  
such as  𝐷𝐷/𝐿𝐿  are often  selected by marine engineers  to maximize operational performance  
(Bertram and Schneekluth, 1998; Papanikolaou, 2014; Zhang e t al., 2008), and therefore often 
vary  in a consistent way  within a functional class. The  dependence of beam  𝐵𝐵(𝐿𝐿)  and  draft  𝐷𝐷(𝐿𝐿)  
on length for  each  class  were  represented  using 𝑛𝑛-degree polynomials  with independent variable  
𝐿𝐿  as   

𝑛𝑛 

 𝜙𝜙 (   𝑐𝑐𝑖𝑖𝐿𝐿𝑖𝑖 𝑛𝑛 𝐿𝐿) = 𝑐𝑐0 + �  (1)  
𝑖𝑖=1 

 
where the constants  𝑐𝑐𝑖𝑖  were determined through standard least-squares (Table 4). A minimum of  
10 i ndependent (𝐿𝐿, 𝑆𝑆) pairs  for each  class were required for the estimate, where 𝑆𝑆  represented  the 
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203 static value 𝐵𝐵  or 𝐷𝐷  being modeled.  Changes in vessel  draft due  to  changes in deadweight tonnage 
were not represented by (1). Bulk measures of  the accuracy of (1)  compared to values  from AIS  
were  root mean square  difference  (RMSD)  

𝑁𝑁
1

𝑐𝑐 

 � �(𝜙𝜙𝑛𝑛(𝐿𝐿𝑘𝑘 ) − 𝑆𝑆 2  (2)  
𝑁𝑁 𝑘𝑘 )
𝑐𝑐 𝑘𝑘=1 

 

and mean relative absolute difference (MRAD)   

𝑁𝑁
1

𝑐𝑐 
|𝜙𝜙𝑛𝑛(𝐿𝐿  𝑆𝑆𝑘𝑘 | � 𝑘𝑘 ) −
  (3)  

𝑁𝑁𝑐𝑐 𝑆𝑆𝑘𝑘 𝑘𝑘=1 

 
where 𝐿𝐿𝑘𝑘  is the  𝑘𝑘-th AIS length value in  class  𝑐𝑐, 𝑆𝑆𝑘𝑘  is the matching  static  value, and  𝑘𝑘=1,…,𝑁𝑁𝑐𝑐. 
The relation  between  (𝜙𝜙𝑛𝑛(𝐿𝐿𝑘𝑘 ) − 𝑆𝑆𝑘𝑘 )/𝑆𝑆𝑘𝑘  and  𝐿𝐿𝑘𝑘  was  also examined  to further  evaluate this  
method of estimating  static values.  

  

2.4 Multiclass Classification  

Logistic regression (LR)  is widely used to represent a dichotomous (2-valued) variable (𝑦𝑦) that 
has a single transition between one  value and the other (generally 0 and 1), dependent upon  
predictor  variables  𝑿𝑿  (Hilbe, 2016; Hosmer Jr  et al., 2013). Here LR  was used to identify  vessels 
according to their  functional class. Basic LR  models  the odds ratio of probability  0 ≤ 𝜋𝜋 ≤1  for  
𝑦𝑦=1  as  

𝑁𝑁
𝜋𝜋

𝑣𝑣 
  ln � � = 𝛽𝛽0 + � 𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖 = 𝜷𝜷 ∙ 𝑿𝑿  (4)  

1 − 𝜋𝜋 
𝑖𝑖=1 

where 𝑿𝑿  is a set of  𝑁𝑁𝑣𝑣  independent variables  (alternatively  called covariates or  predictors),  and  𝜷𝜷  
is a vector of  coefficients.  In this application, t he predictors  were  the difference between the 
AIS-reported values of draft and beam  and those  predicted from (1). Inverting  (4)  yields the  
probability  

exp(𝜷𝜷 ∙ 𝑿𝑿)
 𝜋𝜋(𝑦𝑦 = 1|𝑿𝑿) =  (5)  

1 + exp(𝜷𝜷 ∙ 𝑿𝑿) 
 
In practice, a set of data 𝒟𝒟 = {𝑿𝑿, 𝑦𝑦}  of index  𝑘𝑘 =  1,…,𝑛𝑛, is divided according to the value of  𝑦𝑦  
into two sets of size  𝑛𝑛0  and 𝑛𝑛1, respectively. The 𝜷𝜷  are t hen  determined, usually by  maximizing  
the log-likelihood function  
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𝑛𝑛 

 arg max �[𝑦𝑦𝑖𝑖 log  𝜋𝜋𝑖𝑖 + (1 − 𝑦𝑦𝑖𝑖) (1 − log  𝜋𝜋𝑖𝑖)]   (6)  
𝛽𝛽 

𝑖𝑖=1 

 
where the 𝜋𝜋𝑖𝑖  carry the 𝜷𝜷-dependence.  A common  issue that  must  often be addressed  is 
unbalanced data,  when  𝑛𝑛0 ≫ 𝑛𝑛1, or the reverse, which  can  bias (6), resulting in  poor  estimates  of 
the coefficients  and  degrade  the fidelity of the model. See King  and Zeng (2001)  and Salas-
Eljatib et al. (2018)  for additional details.  A similar issue arises  when  𝒟𝒟  contains clusters around 
one or more points in the data space  (Merlo et al., 2006). Defining a subset  of  𝒟𝒟  using  random  
subsampling  is often employed in the case of unbalanced data, whereas  Tomek Link, Synthetic  
Minority Oversampling, and Neighborhood Cleaning  are  common solutions to clustered data  
(Elhassan and Aljurf, 2016; Guo and Wei, 2019). In this study, random subsampling was used to 
address the data imbalance as  there was little clustering  in the data.  
 
LR  can  also  be used to represent the probabilistic  choice b etween two  distinct quantities  based  
on the same independent variables. Here we examined t he probability  of vessels being in  class  𝑐𝑐  
compared to the  probability of the vessel belonging to any other class  𝑐𝑐′,  

𝜋𝜋(𝑐𝑐|  𝛿𝛿, 𝛾𝛾)
 ln � � = 𝜷𝜷 ∙ 𝑿𝑿  (7)  

𝜋𝜋(𝑐𝑐′|  𝛿𝛿, 𝛾𝛾) 𝑐𝑐 

 
given the parameters  𝛿𝛿  and 𝛾𝛾  related to the residuals of (1), defined below. Similar  “one-vs-rest”  
classification schemes  (Bisong, 2019)  have  been applied to a variety of  labels, including  cancer  
diagnosis  (Zhu and Hastie, 2004), ha ndwriting analysis  (Klimaszewski, 2015), and astronomical 
redshift  (Stivaktakis et al., 2019).   
 
The result of  LR (5) is a real value in the  range  [0,1]. A threshold probability  value is typically  
defined such that if  𝜋𝜋 < 𝜋𝜋0  then 𝑦𝑦  is considered to equal  0, and 𝑦𝑦=1  when 𝜋𝜋 ≥ 𝜋𝜋0. The most  
common selection for this threshold is  𝜋𝜋0=0.5, but this is  somewhat  arbitrary. In this study  𝜋𝜋0  
was allowed to vary, and the resulting c hanges in the  rate of true positive  (TPR) vessel  
classifications, and the rate  of false Positive  (FPR)  classifications were found for each class, 
assuming the AIS-reported vessel type was correct.  These were used to construct Receiver  
Operating Characteristic (ROC) curves, defined  as TPR  vs. FPR  on the unit square, and the Area 
Under Curve  (AUC) of the ROC  (Fawcett, 2006;  Huang and Ling, 2005). ROC curves in 
proximity to the upper-left corner of the domain (high TPR, low FPR) are have higher  fidelity.  
Values of AUC range  from 0 to 1, with the higher  values generally considered an indication of  
an accurate classification scheme.  An  AUC  value  of 0.5 indicates even probability of TP and FP, 
essentially random classification.    
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3. Results  

The vessel class  with the highest number of unique vessels was  the Recreational  class  (Table 1).  
From 2015 to  2019 the  total number of  Recreational vessels roughly doubled  after Marine 
Cadastre started  reporting class-B  AIS in 2018. T he number of  reported Fishing vessels spiked in 
2016. This is also likely to  again  be due to changes in reporting. During that same time period  
the number of Tanker vessels decreased by  almost 1/3, but this was likely  due to a change in 
operations, not reporting.  Overall, the total number of vessels roughly doubled (Table 2), with 
most of that due to an increase in the number of small (𝐿𝐿<30 m) vessels.  The total number of  
larger vessels showed a weak trend,  decreasing  from 2520 in 2016 to 2371 in 2019.  

3.1 Hull Dimensions

Scatter plots of the  
hull dimensions  
illustrate  how the  
dependence of  
vessel beam  𝐵𝐵(𝐿𝐿)  
and draft  𝐷𝐷(𝐿𝐿)  
varied  by class  
(Figure 2), with  
both generally  
increasing  with  𝐿𝐿.  
There was little  
class difference 
apparent for  𝐵𝐵(𝐿𝐿). 
For  𝐿𝐿 <  ~200 m,  𝐵𝐵  
increased roughly  
linearly with  𝐿𝐿  for 
all classes. Tug and 
Supply  class vessels 
had the largest  beam  
for 𝐿𝐿  < 50 m, and 50 
m<𝐿𝐿< 100 m, 
respectively. Larger  
vessels (𝐿𝐿  > ~200 
m) often  had limited  

 

𝐵𝐵  by design. Many  of these  ships  have been in operation for  years and were  built  to pass through 
the Panama  Canal, so had  𝐵𝐵  capped  at the “Panamax” limit  of 32.31 m ,  in place since the 
opening of the canal in 1914. Vessels at or just below this beam size were found for, r oughly, 
170 m  <𝐿𝐿< 300 m. In 2016 the Panama Canal expanded the maximum permissible vessel  beam  
to 51.25  m (“PostPanamax”).  Ships with 𝐵𝐵 >  32 m were exclusively Passenger, Tanker,  and 

Figure  2. (a) Unique-vessel beam vs length, by functional class (Table 1). Dashed  
lines indicate Panamax beam (PX) and Post-Panamax (PPX) beam sizes. Number  
of  vessels (𝑁𝑁) with both 𝐿𝐿, 𝑌𝑌>0 and 0<𝐵𝐵≤200 m is indicated. (b) Unique-vessel  
draft vs length, coded by functional class. Solid  lines are quadratic fits for each  
class. Number of vessels with  𝐿𝐿, 𝐷𝐷, 𝐵𝐵, 𝑌𝑌>0  is indicated.  
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Cargo class with 𝐿𝐿>200 m (Figure 2), though their voyage may not have necessarily included 
passage through the Panama Canal. 

In contrast, 𝐷𝐷(𝐿𝐿) showed more separation by class (Figure 2). Tugs had the highest nominal rate 
of increasing 𝐷𝐷 with 𝐿𝐿, and Passenger class the lowest, though Tugs were generally limited to 
𝐿𝐿<~60 m. The Cargo class included the largest 𝐿𝐿 reported. Tankers often had the highest 𝐷𝐷 for a 
given 𝐿𝐿 in their range, and Cargo class generally had drafts between those of Tankers and 
Passenger classes for 𝐿𝐿 ≳100 m. There was less apparent distinction between the classes in the 
range 𝐷𝐷 ≲ 3 m and 𝐿𝐿 ≲ 60 m. 

3.2 Static Errors 

The quality of the static data was measured by the number of vessels with missing or conflicting 
static values. The unique MMSIs in the study region each year were first identified. Then the 
reported values for the static variables of every vessel were determined each year. All vessels 
examined reported a single value for 𝐿𝐿, 𝐵𝐵, or 𝑌𝑌. About 1-10% of all vessels, depending on the 
year, had multiple 𝐷𝐷 values (Table 2), with up to 24 unique values for a single vessel in one year. 
A high percentage of vessels reported zero (or were missing) values for 𝐿𝐿, 𝐵𝐵, 𝑌𝑌, or 𝐷𝐷, with 𝐷𝐷 
having the highest rate of zero, reaching ~80% in 2019. The number of vessels reporting at least 
one 𝐷𝐷 = 0 and at least one 𝐷𝐷 > 0 over the same year fluctuated, peaking in 2016 at just under 
12% of vessels, and declining to ~1% in 2019. These rapid changes in quality may be indicative 
of changes to the handling of the AIS data, rather than changes in the raw AIS data themselves. 
The static error rates were lower for vessels with 𝐿𝐿 > 30 m (Table 3). For example, only about 
10-20% of vessels failed to report any 𝐷𝐷 value in a given year. 

Individual AIS reports with a missing or zero static value, and a nonzero value for the same 
vessel in another report, can be easily corrected by filling the missing value with the nonzero 
value. Most static values were unchanging, so a single non-zero value would be sufficient. 
However, in the case where multiple 𝐷𝐷 are available, the choice needs to be judicious, or some 
level of acceptable error needs to be determined based on the application. 

Those vessels entirely missing a static variable, or those without an historical record on which to 
draw, require another method for correction. A simple method for estimating 𝐷𝐷(𝐿𝐿) was therefore 
tested. The first step was to identify those MMSI with a complete set of static variables, and then 
implement (1) with 𝑛𝑛=2 for each class of ships with at least 10 unique (𝐿𝐿, 𝐷𝐷) value pairs per 
class. All classes except Enforcement class met these qualifications. The minimum count of ten 
was somewhat arbitrary, but helped avoid fitting too sparsely represented classes. 

3.3 Polynomial Correction 

Beam size could only reasonably be represented by a polynomial for 𝐿𝐿 < ~200 m, above which 
Panamax restrictions dominated the distribution of vessel beam sizes (Figure 2). Just over 4000 
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total vessels with complete static AIS data were partitioned by functional class and their beam 
estimated using (1). The most abundant vessel class was Cargo, with about 2200 unique vessels 
identified (Table 4). Tanker, Passenger, and Tug classes all had several hundred unique vessels; 
all other classes contained a few dozen unique vessels. 

Differences between the estimated beam (𝐵𝐵2) and the beam from AIS (𝐵𝐵) were found for each 
year, and were generally small. For example, in 2017, 66% of the residual values 𝛾𝛾 = |𝐵𝐵2 − 𝐵𝐵| < 
1 m, and 89% were < 2 m (Figure 3). A smaller number of much larger 𝛾𝛾 were found in all 
classes. The relative difference 𝑟𝑟𝐵𝐵 = 𝛾𝛾/𝐵𝐵 was usually higher for smaller (𝐿𝐿<~75 m) vessels. 
With the exception 
of a few outliers, the 
highest 𝑟𝑟𝐵𝐵 was ~0.8-
1.0, found near 
𝐿𝐿~10 m. Overall, 
about 63% of the 
values had 𝛾𝛾/ 
𝐵𝐵<0.1, and about 
90% had 𝛾𝛾/𝐵𝐵<0.25. 
These percentages 
decreased in 2018 
and 2019 to about 
40% and 75%, 
respectively, with 
the increased 
number of smaller 
Recreational vessels 
in the database. 

The resulting beam 
RMSD for all years 
was highest (4.6 m) 
for Supply class, with a MRAD 0.15 (Table 4). The smallest RMSD was slightly above 1 m, 
found for the Fishing class, though because these vessels are smaller (maximum 𝐿𝐿~40 m), their 
MRAD was 0.136. The smallest MRAD was found for the Tanker class at just under 0.06. 

Differences between 𝐷𝐷2 and the AIS-reported 𝐷𝐷, followed a similar pattern. About 70% of 
residuals 𝛿𝛿 = |𝐷𝐷2 − 𝐷𝐷| values were < 1 m and 90% were < 2 m (Figure 4). The majority (~61%) 
of the relative differences 𝛿𝛿/𝐷𝐷 were < 0.1. This was fairly consistent for the other years. The 
draft RMSD for all years was largest for Cargo and Tanker ships, at ~1.4 m. The higher number 
of Cargo, Tanker, and Passenger vessels in the draft error analysis than that for beam was due to 
the inclusion of 𝐿𝐿>200 m vessels in the former. Passengers ships had the lowest RMSD, just 
under 0.6 m. Most of the draft MRAD were about 0.1-0.2, for all classes. 

Figure  3. (a)  Polynomial  predicted draft (𝐵𝐵2) vs AIS (from 2017) reported draft. 
Black line indicates the identify; (b) relative difference of estimated and  
reported beam vs vessel  length from AIS.  

https://����/����<0.25
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The polynomials (1) by definition yielded values of vessel length (𝐿𝐿𝑒𝑒𝑚𝑚) that defined extrema 
values of 𝐵𝐵 or 𝐷𝐷, where the rate of change of the modeled variable changes sign. This was an 
acceptable feature for 
𝐿𝐿𝑒𝑒𝑚𝑚 outside the range 
of reported 𝐿𝐿 values, 
or when 𝐿𝐿𝑒𝑒𝑚𝑚 was near 
the range endpoints. 
Most instances of 𝐿𝐿𝑒𝑒𝑚𝑚 

were acceptable, but 
there were some 
exceptions. The most 
obvious exception 
being the 𝐷𝐷2 estimate 
for the Tug class, 
where 𝐿𝐿𝑒𝑒𝑚𝑚 ~118 m, 
with Tug lengths 
ranging 20 <𝐿𝐿< 180 
m. This condition was 
associated with a gap 
in the Tug class 
between ~70 <𝐿𝐿<150 
m, with tugs of both larger and smaller 𝐿𝐿. Tugs with 𝐿𝐿 above this gap may be more appropriately 
placed into a different class (e.g., Cargo), as they were generally pusher or articulated tug-barge 
vessels. Future studies involving vessel classification should carefully consider both vessel type 
and function. 

3.4 Classification 

LR was applied as a tool for predicting the class 𝑐𝑐 based on each set of (𝐿𝐿, 𝐵𝐵, 𝐷𝐷) from AIS. Each 
class was treated separately, and the 𝑐𝑐′ (7) was then the set of all reports not belonging to 𝑐𝑐. The 
polynomial models (Table 4) for 𝐵𝐵 (with 𝐿𝐿< 200 m) and 𝐷𝐷 (1) for the particular 𝑐𝑐 were used to 
calculate residuals 𝛾𝛾 and 𝛿𝛿 for all the AIS reports. The hypothesis being that vessels in 𝑐𝑐 will be 
distinguished by lower residuals compared to those from 𝑐𝑐′, and therefore could be usefully 
modeled with LR. Reports in 𝑐𝑐 were assigned 𝑦𝑦=1, and the rest 𝑦𝑦=0. The change in the 
distribution of vessel beam at 𝐿𝐿~200 m motivated the LR models be developed in 4 cases: Case 1 
included all AIS reports (0 < 𝐿𝐿< 400 m); case 2 was for 200 < 𝐿𝐿< 400 m; cases 3 and 4 were for 
0 < 𝐿𝐿< 200 m. Cases 1-3 used only 𝛿𝛿 as a predictor, whereas case 4 used both 𝛿𝛿 and 𝛾𝛾 as 
predictors. 

Figure  4. Same as Figure 3  but for vessel draft.  
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411 Initial attempts to build the  LR models  from these data frequently  yielded  𝑝𝑝-values  for the  𝜷𝜷  
coefficients  well above 0.05, and were therefore not considered useful.  This was attributed to the  
unbalanced nature of the  data, that is, when the ratio of the number of vessel reports  in the two 
sets  𝑛𝑛𝑐𝑐/𝑛𝑛𝑐𝑐′  was  very  large or  very  small. To eliminate this effect,  the larger of the two sets were 
randomly subsampled (without replacement)  so that 𝑛𝑛𝑐𝑐 = 𝑛𝑛𝑐𝑐′  and the LR recalculated.  
Rebalancing  consistently yielded 
𝑝𝑝<0.05  for the  𝜷𝜷  values. Independent  
subsampling of the original data was  
repeated  200 times, which was  
sufficient for the mean coefficient  
values, denoted  𝛽𝛽 𝑐𝑐,  to converge (e.g., 
Figures 5,  6).  The coefficients  of all the  
iterations  were stored, from which 95%  
confidence intervals were computed 
directly  from the distribution of the  𝛽𝛽𝑐𝑐. 
The probability of a vessel being  
correctly identified to be in the “one” 
class versus “the rest” was then  defined 
as  when  𝜋𝜋(𝑐𝑐|𝛿𝛿, 𝛾𝛾) ≥   𝜋𝜋 �

0�𝛽𝛽 �𝑐𝑐 .   

The model  was tested  using  a limited  
version of  𝑘𝑘-order cross-validation  
methods  (Aly, 2020; Pala and Atici, 
2019). The data  was divided into 𝑘𝑘=10  
sections of equal  length. For each class  in 
each case, t he indices  within  𝑐𝑐  and  those  
within  𝑐𝑐′  were divided separately due to  
the imbalance o f the data. The 62 mean  
coefficients computed from the  𝑘𝑘  subsets 
were generally  close to those  computed 
using all the data. Relative differences  
between the full-data coefficients and the 
mean of the 𝑘𝑘  data coefficients were 
almost all  small. For 57 coefficients, the  
relative difference was  <5%, with the  
majority being <1%. The largest  
exceptions to this all occurred  in Case 4, Figure  6. Same as Fig 5 but for  the LR  coefficient  

associated with  the Draft variable.  where the mean coefficient for  𝐵𝐵  was  
about twice that obtained in the full-data 

Figure  5. Case 1 constant LR coefficient  for  each  iteration  
(grey), the mean value (black) and the cumulative 
average, for  each vessel class indicated.  

case. The second largest  deviation was for  Fishing vessels, where the coefficient for D differed  
from the full-data case by  10%. The  relative difference of  coefficients for  Research vessels’  
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451 𝐿𝐿, 𝐷𝐷, 𝐵𝐵  were 6%, 7%, and 6%, respectively. There were a small number of instances where the 
maximum  likelihood coefficient calculation converged to a value very different  from  those  
obtained in  almost all other  calculations  for the same case and class. Coefficient  values  more 
than 10 times the value  obtained using all the data were discarded.  

452 
453 
454 

455 

456 Figure  7. ROC curves and  their AUC values for the classes (Table 1)  and  cases indicated. The diagonal  
indicates the random  classification  case.  457 

458 For all classes and cases  ROC curves (Figure 7)  were above the random diagonal, indicating the  
results of the classification scheme  was better than random. Case 1 (all vessels) had the highest  
ROC curves and AUC values for Fishing, Tug, and Passenger classes, all  which had an AUC >  
0.9. Overall, Case 2 (large vessels) had the best results, with steeply  rising c urves at low  FP, and 
AUC values  above 0.9. Case 3  yielded the lowest AUC scores for all classes, with Cargo  and  
Tanker  classes being the  worst performing with AUC of 0.657 and 0.705, respectively. A ll other  
classes  in this case had AUC  > 0.8. The inclusion of a second predictor  variable  (𝛾𝛾) in Case 4  
raised all AUC scores  compared to case 3, with Supply class  rising by 0.09. Relatively large  
increases also occurred in the Cargo, Recreational, and Research classes. The lowest AUC in  
Case 4 was 0.714 for the  Tanker  class. The regression m odel  developed for  Case 1 can be 
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applied to any AIS transmission, assuming 
sufficient statics are available. Application of 
the other Cases would depend on the static 
values (Figure 8). 

One way to explore the reliability of a 
classification scheme is to examine the 
differing characteristics of its least- and most-
confident predictions. Here, the True Positives 
in Case 1 (all vessels) were examined. Vessel 
reports classified as a TP for a high 𝜋𝜋0 were 
more likely to be correctly classified, and those 
satisfying low 𝜋𝜋0 – but not moderate or high 𝜋𝜋0 
– were more likely to be incorrectly classified. 
There were two primary reasons a vessel report 
might have been included in the low 
confidence group: 1) the vessel was 
misclassified in the AIS report, so as expected 
the algorithm rated it with low probability of 
being a TP, and 2) a deficiency in the 
classification scheme, such as in the 
development of the classes or misapplication 
of the algorithm. Examining the characteristics of the two groups helped identify limitations of 
both the data set and the classification scheme. 

The two sets of AIS reports were identified such that they exclusively define a TPR > 0.95 or < 
0.05 (Figure 7), indicating low and high confidence in their classification, respectively. The 𝜋𝜋0 at 
which these occurred varied by class. Summing over all classes, there were 487 reports in the 
low confidence group, and 210 in the high confidence group. Static variables for these vessels 
were then scraped from a third-party vessel traffic website, and the classification obtained was 
compared to that provided in each AIS report. In the low confidence group, 53 (12%) 
classifications did not match. In the high confidence group, 5 (2%) classification inconsistencies 
were found. A null hypothesis that these two ratios are the same was rejected based on both chi-
squared and Fischer’s exact test well above the 99% confidence level. This further demonstrated 
the method ability to detect misclassified vessels. However, the majority of reports in the low 
confidence scheme were not misclassifications but large difference 𝛿𝛿 between predicted and 
reported draft. 

The low confidence group had an average 𝛿𝛿/𝐷𝐷2 = 0.42, compared to 0.003 for the high 
confidence group, indicating vessels in the former group departed from the polynomial estimated 
values much more than those in the latter group. The majority of the low confidence group was 
comprised of a total of 368 entries from Cargo and Tanker vessels, which, as noted above, can 
have a wide variation in draft during their course of operations. The LR algorithm flagged these 
with low confidence, and can be used to identify vessels operating near their extreme drafts. 

Figure  8. Schematic of vessel classification  
algorithm for different Cases of vessel  dimensions 
as described  in the text.  
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509 Future development  should a ccount for such normal variations of draft. The low confidence  
group also contained 60 Recreational and 36 Tug e ntries, neither of which undergo significant  
changes in draft during normal operations. Four of the draft values reported by the Recreational  
ships were roughly a  factor of 3 larger than the value obtained from the third-party website,  but  
with equal  𝐿𝐿  values, suggesting these  draft  entries  may have been in feet instead of meters. All 
but three of the Recreational reports had 𝐿𝐿<60 m, putting them in the area of high draft variation 
within their class  (Figures 3 and 4). For  the Tugs, 18 reported relatively small length (𝐿𝐿<50 m), 
of which 13 were deeply  drafted (6–10 m) pusher tugs that  generally operate coupled to much 
longer vessels or barges. The remaining 18 Tugs reports were also deeply draft pusher or  
articulated tugs reporting 𝐿𝐿  >150 m.   
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521 4. Discussion  

Erroneous or missing  AIS static  values  are not unusual. F or example, in 2019 about 21% of  
vessels with length>30 m operating near large Florida ports did not transmit their draft through 
AIS, and about 7.5% did not  transmit their beam (Table 3), i ntroducing  errors in any  analysis, 
algorithm, or operation based on the presumption the values are accurate. Here novel schemes  
for detecting a nd potentially  correcting  vessel beam, draft, and classification have been explored  
that rely on the partition of AIS types into 9 vessel classes, though not all vessels fit into  the 
defined  classes, and some vessels may better fit a class different than one indicated  by their AIS  
type. Examples  of the latter were articulated tug-barge vessels that might be  more accurately  
classified as  Tanker or  Cargo  vessels  as their function and design is very different than the  more 
typical  (and smaller)  tugs that are used to support the maneuvering of other,  larger vessels.  The 
LR classification scheme  in this study  demonstrated skill in verifying AIS-transmitted  
classification, detecting incorrectly  classified vessels, and flagging those with incorrect draft or  
operating near an  extreme draft.   

The cornerstone of the methods  presented  here  was the creation of independent, l ow-order 
polynomial relations between vessel length and the beam and draft for each vessel class.  For both 
𝐵𝐵  and 𝐷𝐷,  over 60% of the relative differences between predicted  (1) and  AIS-reported values  
were less than 0.1, a nd over 90% had relative  errors < 0.25 ( Figures 3 and 4).  For many  classes,  
these  differences were due to  intra-class  variations  in hull design,  particularly for smaller  Tugs  
and Recreational  vessels. For Cargo and  Tanker classes,  changing  deadweight was  also a 
contributing factor  to these differences. To compensate for these variations, it  would be  useful to 
create  bands of values rather than simple polynomial relations. Varying the coefficients in (1)  
within  their 95% confidence intervals  would be one method to quickly develop these ranges. 
Using a band  of acceptable values  for 𝐵𝐵  and 𝐷𝐷  would also likely  result in  increased  𝜋𝜋0  of the  
True Positive rates  (Figure 7).  
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Improvement of the classification scheme might also be achieved by the addition of dynamic 
variables such as speed, location, and turning rate, as predictor variables. For instance, it is likely 
a petroleum tanker will have lower draft immediately following a port call in Florida, which is 
not a significant petroleum producing state. Similarly, Fishing vessels are more likely to visit and 
remain within certain offshore areas than, say, large Cargo vessels. These examples of 
distinguishing vessel behavior are not sufficient to make a class determination by themselves, but 
could be useful in conjunction with other variables. 

The ongoing development of corrective schemes for AIS variables suggests that these data can 
be treated much like some other large observational data sets, with varying levels of quality 
analysis and control (QA/QC). NOAA has an extensive procedure for QA/QC of real-time 
oceanographic measurements (Hofmann and Healy, 2017), with older instrument types such as 
tide gauges having more robust protocols than newer instruments such as chemical sensors. 
Possible levels of QA/QC for AIS are outlined as follows: 

Level 0: raw, decoded AIS data, directly readable in the form of text, csv, or similar formats. No 
correction applied. 

Level 1: Vessels would be identified using their reported MMSI, and possibly their IMO number, 
name, and other identifying information (Winkler, 2012). Missing or suspect static variables 
would be replaced with values taken from the historical records of the identified vessel. The 
existence of such records is assumed, so this would be best applied to vessels of sufficient age to 
generate the proper database. This level could also include removal and correction of isolated 
anomalous dynamic values such as large spikes in velocity or position. Precautions would need 
to be implemented in cases of erroneous MMSI, when the same MMSI is reported for different 
vessels, or when a vessel changes its MMSI as sometimes occurs when coming under new 
ownership. 

Level 2: Interpolative schemes would be used to fill missing static values for vessels without 
records sufficient to permit application of Level 1 corrections. The schemes would be developed 
using sets of related vessel types. The polynomial relations developed here provide an example, 
where vessels were organized into functional classes and the (presumably correct) length and 
class were used to estimate beam and draft. It would be instructive to develop these relations on 
much larger sets of vessels as it is possible some bias was introduced in the selection of Florida 
as a test bed. With a sufficient number of vessels, it may be possible to create interpolative 
methods for each AIS type. Other groupings of vessels might yield different results, but 
constraints of nautical design necessitate a limited ranges of hull geometries (Figure 2). Multi-
hull designs such as catamarans and trimarans would likely need to be treated separately. 

Level 3: AI/ML methods would synthesize the full AIS record, including both static and 
dynamic variables, of the individual vessel and other vessels, to detect and correct errors and 
omissions in AIS reports. Some initial steps towards developing such a set have been taken using 
corrected AIS position records (Masek et al., 2021). Level 3 might also include use of data 
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beyond the AIS, such as Synthetic Aperture Radar (SAR) and optical imaging from low-orbiting 
satellites to determine ship class, size and speed (Purivigraipong, 2018; Riveiro et al., 2018), 
stationary mounted cameras, local radar, or similar instruments placed onto aircraft (Eaton et al., 
2018). The addition of 𝐵𝐵 to the predictor set increased the AUC values of some classes by ~0.1 
(Figure 7), suggesting the addition of other predictors could further increase the accuracy of the 
classification scheme. The number of useful predictors is likely to be limited by the “curse of 
dimensionality” (Geenens, 2011) where the calculation of model parameters (e.g., β) fails to 
converge due to a sample space made sparse by the inclusions of too many independent 
variables. 

The AIS provides essential information for the management and control of maritime operations, 
is widely used in retrospective studies of vessel activities, and in the ongoing transformation of 
the maritime industry by artificial intelligence and related technologies (Artikis and Zissis, 2021; 
de la Peña Zarzuelo et al., 2020; Plaza-Hernández et al., 2020). The methods described here 
provide a new method for detecting and potentially updating some static AIS variables, 
supporting these efforts. 
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743 Figure Captions  

Figure 1.  Map of peninsular Florida. The  5 largest  ports are indicated.  

Figure 2. (a)  Unique-vessel beam vs length, by functional class (Table 1). Dashed lines indicate 
Panamax beam (PX) and  Post-Panamax (PPX) beam sizes. Number of vessels (𝑁𝑁) with both 
𝐿𝐿, 𝑌𝑌>0 and 0< 𝐵𝐵 ≤200 m is indicated. (b) Unique-vessel draft vs length, coded by functional  
class. Solid lines are quadratic fits for each class. Number of vessels with 𝐿𝐿, 𝐷𝐷, 𝐵𝐵, 𝑌𝑌>0 is  
indicated.  

Figure  3. (a)  Polynomial  predicted draft (𝐵𝐵2) vs AIS (from 2017) reported draft. Black line  indicates  the  
identify; (b) relative difference of estimated  and  reported beam vs vessel length from AIS.   

Figure 4. Same as Figure 3  but for vessel draft.  

Figure 5. Case 1 constant LR coefficient  for  each iteration (grey),  the mean value (black) and the 
cumulative average, for each vessel  class indicated.  

Figure 6. Same as Fig 6 but for  the LR  coefficient  associated with  the Draft variable.  

Figure 7. ROC curves and  their AUC values for  the classes (Table 1) and  cases indicated. The diagonal  
indicates the random  classification  case.  

Figure 8. Schematic of vessel classification algorithm for different Cases of vessel dimensions as  
described in the text.  
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